LEANON CAMERA CUR

Budget Macro

6/7/2016

Macro

• Extreme close-up photography of very small subjects

Macro

• Extreme close-up photography of very small subjects → life size or greater

• Life size → subject the size of sensor fills the frame

Reproduction ratio of 1:1

Macro

- Best results with dedicated macro lens
 - Reproduction ratio of 1:1 (sometimes only 1:2)
 - Flat field
 - No distortion
 - No field curvature
 - High resolution
 - Long focus throw
 - ► Usually around 360°, possibly up to 720°
 - Autofocus limit switch
 - \rightarrow Restricts autofocus range \rightarrow prevents lens going to ∞ and back
- Negatives of a dedicated macro lens
 - Cost → can be close to \$1000 for a modern AF macro
 - Inconvenience → don't want to carry it due to size/weight

Magnification

distance scale

- How do we get it?
 - Magnification = focal length / (subject distance focal length)
 - To increase magnification
 - 1. Increase focal length
 - 2. Decrease subject distance (move closer)
- Working distance
 - Distance from front of lens to subject
 - Usually greater for longer focal length (100mm macro vs. 50mm macro)
 - > Important for insects that are easily "spooked" (such as butterflies)
- Minimum focus distance (MFD)
 - Closest subject distance which can be brought into focus
 - > Turning the focus ring as far as possible from ∞
 - Usually increases with focal length

Budget solution #1 – Close-up lens ("filter")

- Secondary lens added to primary lens to reduce MFD
 - Attaches to primary lens filter threads
 - > Some are screw on (better), others are clip on (faster)
 - > Clip on lenses can be used on a range of filter thread sizes
 - Measured in "diopters": +1, +2, +4, +8, etc.
 - Higher number has stronger effect

Budget solution #1 – Close-up lens ("filter")

- Secondary lens added to primary lens to reduce MFD
 - Usage
 - More effective with long focal length lenses
 - > Can be stacked for more magnification (image quality may suffer)
 - > Quality may be better with a prime, but a zoom can be convenient
 - Zoom tip: focus at long end, then zoom out for composition (unless focal length change causes focus change → varifocal)
 - Quality
 - > Single element versions are prone to aberrations like CA
 - > Double element versions have much less CA (also more expensive)
 - > Performs well if designed for a specific lens otherwise hit or miss

Budget solution #1 – Close-up lens ("filter")

- Evaluation
 - Pros
 - > Small and light → handy approach for moderate magnification
 - Can be used on many different lenses (using step-up or step-down rings)
 - No inherent light loss
 - Cons
 - Lower quality than a dedicated macro lens (especially if stacked)
 - Performance may vary from lens to lens
- Cost
 - Price (single element): \$10 to \$25 (at B&H Photo Video)
 - Not recommended due to CA and other aberrations
 - Price (multiple element): \$40 to \$150 (at B&H Photo Video)

Budget solution #2 – Teleconverter

- Secondary lens added to primary lens to increase FL
 - Attaches between primary lens and camera body (usually)
 - > Functions as a optical magnifier of part of the image field
 - > Complex: must couple electronic or mechanical connections to lens
 - Measured by focal length increase factor: $1.4\times$, $1.7\times$, $2\times$, $3\times$
 - > Apparent increase in focal length at the expense of resolution
 - MFD does not change

Budget solution #2 – Teleconverter

- Evaluation
 - Pros
 - > Smaller than a dedicated macro lens
 - \rightarrow Can be used for non-macro photography \rightarrow sports, concerts, etc.
 - Cons
 - Loss of resolution due to magnifying small part of primary image
 - Light loss \rightarrow 2× teleconverter = 2 stops light loss (f/4 \rightarrow f/8)
 - > Some teleconverters only work with certain lenses
 - > Top end teleconverters can cost as much as a lens
- Cost
 - Price (new): \$90 to \$548 (at B&H Photo Video)

Budget solution #3 – Extension tube

- Hollow tube which moves lens away from camera
 - Attaches between primary lens and camera body
 - Reduces minimum focus distance (and also working distance)
 - > May or may not support communication between lens and body
 - Measured by length of tube: 7mm, 14mm, 28mm, etc.
 - Longer tube allows closer focus → also reduces light more
 - Can be stacked for more magnification

contacts for communication

Budget solution #3 – Extension tube

- Hollow tube which moves lens away from camera
 - Usage
 - More effective with shorter lenses (up to a point → working distance)
 - If no communication between lens and body → manual focus only, lens must be used in stop-down aperture mode (requires aperture ring)
 - Quality
 - No lens elements to degrade image quality

Budget solution #3 – Extension tube

- Evaluation
 - Pros
 - > No lens elements to add aberrations or affect primary lens optics
 - > Small and very light
 - Cheapest solution (versions with lens communication cost more)
 - Cons
 - ▶ Light loss → may be difficult to focus in stop-down mode
 - Working distance is reduced
- Cost
 - Price range for 3-ring set (new): \$18 to \$180 (at B&H)
 - > Simple tubes are cheap, lens communication adds to cost